

La K-teoría de Milnor y sus conjeturas

Jorge Alfredo Álvarez Contreras

Asesores: Gabriela Guzmán (CIMAT) Luis Ángel Zaldívar Corichi (UDG)

• El anillo de Grothendieck-Witt

Sea F un campo. Un espacio bilineal es un F-espacio vectorial V equipado con una forma bilineal simétrica $B: V \times V \to F$. Un espacio cuadrático V de dimensión finita es no degenerado (o regular) si la función lineal $\hat{B}: V \to V^*$ dada por $\hat{B}(v) = B(v, -)$, es un isomorfismo.

El grupo de Grothendieck-Witt El grupo de Grothendieck-Witt de F es el grupo abeliano asociado al monoide de clases de isometría de espacios regulares

$$GW(F) = (\{(V, B) \mid \text{espacios bilineales}\} / \sim_{\text{isom}})^{\text{gp}}. \tag{1}$$

En otras palabras, grupo de Grothendieck-Witt clasifica las formas cuadráticas no degeneradas sobre F. Está generado por símbolos $\langle a \rangle$ con $a \in F^*$, sujetos a las relaciones

$$\begin{cases} \langle a^2 \rangle = 1 \\ \langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a+b) \rangle. \end{cases}$$
 (2)

El símbolo $\langle a \rangle$ corresponde al espacio vectorial V = F equipado con la forma cuadrática $q(x) = ax^2$. Para cualquier espacio bilineal, su clase en GW(F) es de la forma $\langle a_1, \ldots, a_n \rangle :\equiv \langle a_1 \rangle + \cdots + \langle a_n \rangle$. La multiplicación $\langle a \rangle \langle b \rangle = \langle ab \rangle$ convierte a GW(F) en un anillo.

El plano hiperbólico y el anillo de Witt El anillo GW(F) contiene al ideal generado por $h = \langle 1, -1 \rangle$, el cual controla gran parte de la estructura del anillo. El elemento h se conoce como el plano hiperbólico y sus múltiplos enteros forman un ideal de GW(F). El cociente W(F) = GW(F)/(h) se conoce como el anillo de Witt.

Invariantes de isometría Podemos distinguir espacios bilineales usando invariantes como:

• La dimensión de $\langle a_1, \ldots, a_m \rangle - \langle b_1, \ldots, b_n \rangle \in GW(F)$ es $m - n \in \mathbb{Z}$. La dimensión de una clase [V] en W(F) solo está bien definida módulo 2, ya que dim h = 2. La denotamos como $e_0(V) \in \mathbb{Z}/2$. El núcleo I = I(F) de este morfismo $e_0 \colon W(F) \to \mathbb{Z}/2$ se conoce como el *ideal fundamental* de W(F). Tenemos el diagrama

$$GW(F) \xrightarrow{\dim} \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$I(F) \longrightarrow W(F) \xrightarrow{e_0} \mathbb{Z}/2,$$

$$(3)$$

Nótese que $W/I \xrightarrow{\sim} \mathbb{Z}/2$.

- El determinante det: $GW(F) \to F^*/(F^*)^2$ está definido por $\det(\langle a \rangle) = a$. No se puede extender a W(F) porque $\det(h) = -1$, pero se puede definir el discriminante disc: $W(F) \to F^*/(F^*)^2$ como $\operatorname{disc}(\langle a_1, \ldots, a_n \rangle) = (-1)^{n(n-1)/2}(a_1 \cdots a_n)$. Esta es solo una función de conjuntos, pero define un homomorfismo de grupos si la restringimos al ideal fundamental I = I(F). De hecho, el morfismo $e_1 \colon I \to F^*/(F^*)^2$ que obtenemos, es suprayectivo y tiene núcleo I^2 . Luego, $I/I^2 \xrightarrow{\sim} F^*/(F^*)^2$.
- El álgebra de Clifford $\operatorname{Cl}(V,B)$ de un espacio bilineal (V,B) de dimensión par (en I) es una F-álgebra simple central isomorfa a su álgebra opuesta, así que obtenemos un elemento del subgrupo de 2-torsión $\operatorname{Br}(F)_2$ del grupo de Brauer $\operatorname{Br}(F)$ de F. Al restringir esta función a I^2 , obtenemos un morfismo suprayectivo $e_2:I^2\to\operatorname{Br}(F)_2$, conocido como el invariante de Clifford, cuyo núcleo es I^3 . Luego, $I^2/I^3\stackrel{\sim}{\longrightarrow}\operatorname{Br}(F)_2$.

• La K-teoría de Milnor y sus conjeturas

Los tres grupos de arriba coinciden con los tres primeros grupos de cohomología de Galois de F con coeficientes en $\mathbb{Z}/2$, es decir, los invariantes e_0, e_1, e_2 inducen isomorfismos

$$W/I \xrightarrow{\sim} \mathbb{Z}/2 \simeq H^{0}(G_{F}, \mathbb{Z}/2),$$

$$I/I^{2} \xrightarrow{\sim} F^{*}/(F^{*})^{2} \simeq H^{1}(G_{F}, \mathbb{Z}/2),$$

$$I^{2}/I^{3} \xrightarrow{\sim} \operatorname{Br}(F)_{2} \simeq H^{2}(G_{F}, \mathbb{Z}/2).$$

$$(4)$$

Esta observación sugiere que el anillo graduado

$$\operatorname{Gr}_{I}(W(F)) = \bigoplus_{n=0}^{\infty} I^{n}/I^{n+1}$$
(5)

debería coincidir con el anillo de cohomología de Galois de ${\cal F}.$

La K-teoría de Milnor En su artículo [Mil70], Milnor propone un programa para construir el isomorfismo deseado: su idea es demostrar dos conjeturas acerca del álgebra graduada

$$K_*^M(F) = \frac{T(K_1(F))}{(l(a) \otimes l(1-a) \mid a \neq 0, 1)},\tag{6}$$

que ahora conocemos como el anillo de K-teoría de Milnor. Aquí, $K_1(F) = \{l(a) \mid a \in F^*\}$ denota al grupo F^* , visto como \mathbb{Z} -módulo aditivo y $T(K_1(F))$ es su álgebra tensorial con coficientes enteros. Milnor se refiere a su definición como algo "puramente ad-hoc", que concuerda con los primeros tres grupos de K-teoría de F:

$$\begin{cases} K_0(F) \simeq \mathbb{Z}, \\ K_1(F) \simeq F^*, \\ K_2(F) \simeq (F^* \otimes_{\mathbb{Z}} F^*)/(a \otimes (1-a)). \end{cases}$$
 (7)

Las conjeturas de Milnor La K-teoría de Milnor actúa como un puente entre el anillo de cohomología $H^*(G_F, \mathbb{Z}/2)$ y el anillo graduado $Gr_I(W(F))$. Los cocientes $K_n^M(F)/2$ para n = 0, 1, 2coinciden con los grupos de (4). En particular, tenemos isomorfismos

$$I/I^2 \stackrel{\nu_1}{\leftarrow} K_1^M(F)/2 \stackrel{\eta_1}{\longrightarrow} H^1(G_F, \mathbb{Z}/2),$$
 (8)

que identifican a los tres grupos con $F^*/(F^*)^2$. Milnor nota que las imágenes de estos morfismos en $Gr_I(W(F))$ y en $H^*(G_F, \mathbb{Z}/2)$ satisfacen las relaciones de la presentación de $K_*^M(F)$, así que determinan morfismos de anillos graduados

$$\operatorname{Gr}_{I}(\operatorname{W}(F)) \stackrel{\nu}{\leftarrow} K_{*}^{M}(F)/2 \stackrel{\eta}{\rightarrow} H^{*}(G_{F}, \mathbb{Z}/2).$$
 (9)

La conjetura de Milnor sobre el símbolo de Galois es la afirmación de que ν es un isomorfismo. La afirmación para η se llama la conjetura de Milnor en formas cuadráticas. Ambas fueron demostradas en 1996 usando \mathbb{A}^1 -homotopía: la primera por Vladimir Voevodsky y la segunda por Orlov, Vishik y Voevodsky.

• La K-teoría de Milnor-Witt

En 2004, Fabien Morel y Mike Hopkins definen la K-teoría de Milnor-Witt como el anillo graduado $K_*^{MW}(F)$ generado aditivamente por un elemento [u] en grado +1 para cada $u \in F^*$ y un elemento η de grado -1, sujetos a las relaciones

$$\begin{cases}
[a][1-a] = 0 \\
[ab] = [a] + [b] + \eta[a][b] \\
\eta[a] = [a]\eta \\
h\eta = 0
\end{cases}$$
(10)

donde $h = 2 + \eta[-1]$. La parte de grado cero es justamente $K_0^{MW}(F) = \mathrm{GW}(F)$: la correspondencia está dada por $\langle a \rangle = \eta[a] + 1$. Además, [1] = 0, $\langle 1 \rangle = 1$, $\langle a \rangle \langle b \rangle = \langle ab \rangle$ y el espacio hiperbólico es justamente $h = \langle 1, -1 \rangle$.

K-teoría de Milnor y K-teoría de Witt La K-teoría de Milnor se puede recuperar como $K_*^M(F) = K_*^{MW}(F)/(\eta)$, ya que al imponer la relación $\eta = 0$, el símbolo [a] corresponde a l(a). Por otro lado, la K-teoría de Witt se define como el cociente $K_*^W(F) = K_*^{MW}(F)/(h)$, cuyo grado cero es $K_0^W(F) = W(F)$.

Nótese que al anular η , el plano hiperbólico $h = \langle 1, -1 \rangle = 2 + \eta[-1]$ cae en $2 \in K_*^M(F)$ y, por lo tanto, se anula en $K_*^M(F)/2$. Luego, tenemos un morfismo inducido $K_*^W(F) \to K_*^M(F)/2$, cuyo núcleo es exactamente el ideal (η) . La parte en grado 0 de este ideal es el ideal fundamental $I(F) \subseteq W(F)$, así que el diagrama (3) es exactamente la parte en grado cero del diagrama de anillos graduados

$$K_*^{MW}(F) \longrightarrow K_*^M(F)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\eta) \longrightarrow K_*^W(F) \longrightarrow K_*^M(F)/2$$

$$(11)$$

Morel construye un isomorfismo

$$K_*^W(F) \xrightarrow{\sim} I^*(F)$$
 (12)

entre la K-teoría de Witt y el anillo graduado $I^*(F) = \bigoplus_{n \in \mathbb{Z}} I^n(F)$, donde $I^n(F) = W(F)$ para $n \leq 0$. Al anular η en ambos lados, se recupera la conjetura de Milnor en formas cuadráticas:

$$K_*^M(F)/2 \xrightarrow{\sim} \operatorname{Gr}_I(W(F)).$$
 (13)

Relaciones con \mathbb{A}^1 -homotopía En la categoría homotópica de F, además de las esferas simpliciales S^n , tenemos una dimensión de esferas algebraicas generadas por el círculo de Tate \mathbb{G}_m . Morel demuestra que, para $n \geq 2$; $i \geq 1$; $m, j \geq 0$ tenemos

$$[S^{m} \wedge \mathbb{G}_{m}^{j}, S^{n} \wedge \mathbb{G}_{m}^{i}]_{*,H(F)} = \begin{cases} 0 & m < n, \\ K_{i-j}^{MW}(F) & m = n. \end{cases}$$
(14)

En particular, para $m = n \ge 2$ y $j = i \ge 1$,

$$[S^n \wedge \mathbb{G}_m^i, S^n \wedge \mathbb{G}_m^i]_{*, H(F)} = K_0^{MW}(F) = GW(F). \tag{15}$$

Cuando i=n, tenemos $S^n \wedge \mathbb{G}_m^n \simeq (\mathbb{P}^1)^{\wedge n},$ así que

$$[(\mathbb{P}^1)^{\wedge n}, (\mathbb{P}^1)^{\wedge n}]_{*, H(F)} = GW(F)$$
(16)

para $n \geq 2$. Esto es un análogo al resultado $[S^n, S^n]_* \simeq \mathbb{Z}$ para $n \geq 1$, en la categoría homotópica de espacios topologicos. De hecho, $\mathrm{GW}(F) = \mathbb{Z}$ para cualquier campo cuadráticamente cerrado.

Referencias

[Mil70] John W. Milnor. "Algebraic K-Theory and Quadratic Forms". In: 1970. URL: https://api.semanticscholar.org/CorpusID:234489840.

[Dég23] Frédéric Déglise. Notes on Milnor-Witt K-theory. 2023. arXiv: 2305.18609 [math.AG]. URL: https://arxiv.org/abs/2305.18609.

[Dug04] Daniel Dugger. Notes on the Milnor conjectures. 2004. arXiv: math / 0408436 [math.AT]. URL: https://arxiv.org/abs/math/0408436.

[Mor06] Fabien Morel. " \mathbb{A}^1 -algebraic topology". In: 2006. URL: https://api.semanticscholar.org/CorpusID: 209451876.

[GS17] Philippe Gille and Tamás Szamuely. "Central Simple Algebras and Galois Cohomology". In: 2017. URL: https://api.semanticscholar.org/CorpusID:209824684.